If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^3+Y^2-15Y-49=0
We add all the numbers together, and all the variables
Y^2-15Y=0
a = 1; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·1·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*1}=\frac{0}{2} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*1}=\frac{30}{2} =15 $
| 3m–6=5 | | Y=0.8(x+8)^2-5 | | 27,4-1,6x=21 | | 2,5x-15,5=-3 | | 1,4x+13,2=23 | | 1,4x+13,2=23 | | -6x-11=-89 | | x+(27+60)=87 | | 1/3*x+4=1/2*x+5 | | Z2+6z+10=0 | | 16/x=4 | | 7=x-29 | | 77-11=y+18 | | 5p=30+1-6 | | 5,2x=104 | | 2t=3t+12 | | x*3-x=16 | | -7×+8y=25 | | 135=0,9x | | 135-10=x | | x=27+60 | | 10+c-90=11 | | ⅛x=6 | | 135=x-10 | | 7x-5x+20=18 | | 1 x=68 | | x+x=27+60 | | 5c=14c+21-12 | | 6−(3−2x)=11 | | 21=6x3 | | 40-5y=-y+4 | | 85=43+x |